Counting Toroidal Binary Arrays

نویسنده

  • S. N. Ethier
چکیده

A formula for the number of toroidal m × n binary arrays, allowing rotation of the rows and/or the columns but not reflection, is known. Here we find a formula for the number of toroidal m × n binary arrays, allowing rotation and/or reflection of the rows and/or the columns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Toroidal Binary Arrays, II

We derive formulas for (i) the number of distinct toroidal n × n binary arrays, allowing rotation of rows and/or columns as well as matrix transposition, and (ii) the number of distinct toroidal n × n binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

متن کامل

Counting Non-Isomorphic Chord Diagrams

Different formulas counting families of non isomorphic chord diagrams are given : planar and toroidal ones and those of maximal genus. These formulas are obtained establishing results on the structure of the automorphism group of diagrams of a given genus.

متن کامل

Counting BPS Blackholes in Toroidal Type II String Theory

We derive a U-duality invariant formula for the degeneracies of BPS multiplets in a D1-D5 system for toroidal compactification of the type II string. The elliptic genus for this system vanishes, but it is found that BPS states can nevertheless be counted using a certain topo-logical partition function involving two insertions of the fermion number operator. This is possible due to four extra to...

متن کامل

Counting unlabelled toroidal graphs with no K33-subdivisions

We provide a description of unlabelled enumeration techniques, with complete proofs, for graphs that can be canonically obtained by substituting 2-pole networks for the edges of core graphs. Using structure theorems for toroidal and projectiveplanar graphs containing no K3,3-subdivisions, we apply these techniques to obtain their unlabelled enumeration.

متن کامل

Counting Parameterized Border Arrays for a Binary Alphabet

The parameterized pattern matching problem is a kind of pattern matching problem, where a pattern is considered to occur in a text when there exists a renaming bijection on the alphabet with which the pattern can be transformed into a substring of the text. A parameterized border array (p-border array) is an analogue of a border array of a standard string, which is also known as the failure fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013